Our sectors of industry

Every industry and every product is individual. By using CAE software, however, product development can be improved regardless of the industry. We have focused in particular on the following industries:

In today’s globalized world, consumer goods are considered obsolete faster than ever.  The wishes and requirements of consumers are increasing at a rapid pace: Personalization, design, longevity, sustainability. In order to remain competitive, companies must therefore constantly bring new innovations to the market. Conversely, this means above all that development cycles must be drastically shortened. 

With the help of simulation, you can quickly and efficiently compare design alternatives and thus develop the best possible product. Because the tests are carried out virtually, the number of physical prototypes required is reduced. This saves you costs and allows you to bring your new products to the market faster.

Discover how simulation makes the consumer product development process more efficient:

Case Study “Ariens: Redesign of the Gravely Brand Zero-Turn Commercial Lawn Mower” (Abaqus, fe-safe) 3.01 MB
Case Study “Ariens: Redesign of the Gravely Brand Zero-Turn Commercial Lawn Mower”

Ariens engineers were tasked with a redesign of their Gravely brand zero-turn commercial lawn mower. They wanted to design the mower as efficiently as possible to cut manufacturing costs and increase fuel efficiency. Simulation would be necessary to deliver an upgraded mower that met these goals on time. Ariens engineers used Abaqus/CAE and fe-safe from Dassault Systèmes SIMULIA, along with Wolfstar Technologies’ True-Load, to locate and accurately model strain gauges in all areas of the lawn mower, enabling weld elimination, part-count reduction, fatigue life improvement and other design enhancements. Part count of the mower frame was reduced by 50%. Testing time and costs were cut. When the new mower went through final field tests, Ariens engineers’ confidence in their simulations was supported by performance.

Case Study “Trek Bicycles: Use of Realistic Simulation to Advance Bike Performance” (Abaqus) 1.75 MB
Case Study “Trek Bicycles: Use of Realistic Simulation to Advance Bike Performance”

In its ongoing race to advance bike performance, Trek wanted to expand the use of realistic simulation in their design cycle across multiple bike programs. In  particular, Trek engineers wanted to better understand how bikes performed under the real-world stunt rides of its professional racers. By pairing SIMULIA’s Abaqus with the True-Load add-on, Trek engineers could set up a test environment that quantified the loads created in the field during extreme scenarios so they could compare that data to current lab results to determine whether they needed to develop new tests or modify existing ones.

Case Study “Lighten up! Amcor “Amcor Uses Realistic Simulation to Stay on Top in Plastic Container Market” (Abaqus) 1.76 MB
Case Study “Amcor Uses Realistic Simulation to Stay on Top in Plastic Container Market”

Leading plastic container manufacturer Amcor is continually looking for ways to reduce the amount of material used in beverage containers while keeping them strong and cost-effective to produce. Simulation of containers throughout the design process using SIMULIA tools helps engineers identify strain areas and potential failure points, leading to lightweight, optimized designs. Amcor customers enjoy lower production costs and less risk of product failure, while Planet Earth and its inhabitants enjoy less waste in landfills and a greener future for all.

Case Study “Tetra Pak: Modelling the Entire Packaging Process Within a Single FEA Model” (Abaqus) 971.74 KB
Case Study “Tetra Pak: Modelling the Entire Packaging Process Within a Single FEA Model”

Tetra Pak wanted to ensure the integrity of aseptic packaging by modeling the complex fluid-structure interaction of the filling and sealing process including packages, liquid, and machines. Tetra Pak chose Abaqus to evaluate complexities of the packaging process. The Coupled Eulerian-Lagrangian capability in  Abaqus successfully models the entire packaging process within a single FEA model. The realistic packaging process model will help with development of new packaging and upgrades to existing machines.

The trends of the fourth industrial revolution, including artificial intelligence, machine learning and cloud computing, have drastically changed the development process in mechanical and plant engineering. The machines themselves are now so well networked that they collect a large amount of data and make it available to developers. However, the central requirements remain the same: maximum performance, minimum downtime. If the collected data is used correctly, simulation can be used to optimize existing machines and systems and to develop new solutions.

Discover how simulation makes the development process in mechanical and plant engineering more efficient:

Case Study “DPS: Simulating the Interaction of Electronic Controls With Factory Hardware” (Abaqus) 824.11 KB
Case Study “DPS: Simulating the Interaction of Electronic Controls With Factory Hardware”

As automation becomes more widespread across many industries, predicting and fine-tuning complex machine behavior is increasingly critical for optimizing performance. International engineering software provider Digital Product Simulation (DPS) was looking to develop a methodology for simulating the interaction of electronic controls with factory hardware. The combined strengths of Abaqus’ physical modeling and CATIA Systems’ logical modeling helped DPS “co-simulate” the behavior of a gantry robot in a feedback loop of data exchange.

Case Study “Zollner Electronik AG: Designing A Fire-Breathing Mechatronic Dragon” (Simpack) 410.15 KB
Case Study “Zollner Electronik AG: Designing A Fire-Breathing Mechatronic Dragon”

Zollner Electronik AG engineers were tasked with designing a fully functional, fire-breathing mechatronic dragon for the German Further Drachenstich festival. The team used SIMPACK multi-body simulation software from Dassault Systèmes’ SIMULIA to generate and solve 3D models that predicted and visualized motion, coupling forces, and stresses on the entire flexible system. SIMPACK allowed Zollner engineers to design the complex robot without running extensive field tests. The software helped them solve a wide range of challenges, improve the motion and stability of the machine, and be fully confident in their final  design.

Driverless, networked cars are creating a new era of travel that is characterized by efficiency, environmental friendliness, comfort, connectivity and safety. Due to the growing population and the advancing urbanization, it is also important to find new and innovative solutions in rail transport.

Creative design processes are required to ensure the success of next generation vehicles. With the help of simulation, you can test and optimize the entire digital vehicle in the early phases of the development process. In this way, you can eliminate performance deficits and find the optimum design variant.

Discover how simulation makes the vehicle and mobility development process more efficient:

Case Study “Yamaha Motor Company: Improving Performance of Off-Road Motorcycle Radiator Assemblies” (Abaqus) 3.29 MB
Case Study “Yamaha Motor Company: Improving Performance of Off-Road Motorcycle Radiator Assemblies”

Yamaha Motor Company wanted to improve performance of its off-road motorcycle radiator assemblies and was looking for a way to reduce time-consuming real-world testing. Abaqus FEA from Dassault Systèmes SIMULIA provided accurate, realistic simulations of the simulations of the mechanism of motorcycle of motorcycle tipovers on the deformation of the components. Yamaha is now confident that its radiator assembly strength simulations accurately predict physical test results, has identified the optimum locations for countermeasures, and can use its highly reliable simulation tools for developing new, more effective designs.

Case Study "TEN TECH: Designing the LinkNYC Communications Kiosks" (3DEXPERIENCE) 4.96 MB
Case Study "TEN TECH: Designing the LinkNYC Communications Kiosks"

Tasked with designing the LinkNYC communications kiosks for all the hazards of outdoor survival in a big city, TEN TECH LLC needed advanced simulation technology to ensure the robust functionality of these novel structures. 3DEXPERIENCE solutions on the cloud enabled the TEN TECH team to access the full portfolio of SIMULIA simulation tools, collaborate effectively, and achieve results efficiently. By working on the 3DEXPERIENCE platform, the TEN TECH team helped produce a robust design ready for manufacturing that is now operating successfully on the sidewalks of New York.

Case Study “Norwegian University of Science and Technology: Designing Efficient Vehicle Components” (Abaqus, Tosca, Isight) 499.07 KB
Case Study “Norwegian University of Science and Technology: Designing Efficient Vehicle Components”

University students participating the NTNU Revolve team, a contestant in the international Formula Student racing competition, needed a way to design strong, lightweight, and cost-effective vehicle components. Using Dassault Systèmes’ SIMULIA portfolio, including Abaqus FEA, Tosca topology optimization and Isight automation tools, students were able to develop highly competitive but safe component designs.

Case Study “Stadler Rail: Analyzing Railcar Performance Under Head-On Crash Loads” (Abaqus) 971.80 KB
Case Study “Stadler Rail: Analyzing Railcar Performance Under Head-On Crash Loads

European railcar manufacturer Stadler Rail needed to ensure the crashworthiness of a new bi-level passenger car (KISS) and the performance of its crash module. Realistic simulation with Abaqus FEA from SIMULIA, the Dassault Systèmes 3DEXPERIENCE application, enabled Stadler to analyze railcar  performance under head-on crash loads. Using Abaqus enabled Stadler to confirm that the KISS railcar design successfully fulfilled all requirements of the European standards while optimizing weight and reducing product development times.

Case Study "Imperial College London: Improving Composite Materials and Graphene" (Abaqus) 1.54 MB
Case Study "Imperial College London: Improving Composite Materials and Graphene"

Researchers at London Imperial College’s department of aeronautics were seeking ways to improve the strength, fracture response and damage tolerance of composite materials and graphene through the use of engineered microstructures. The team needed to develop methodologies for simulating and analyzing the properties of these materials, which are increasingly being used in aerospace, automotive, energy and other industries, for lightweighting and other sustainability goals. The Imperial College team developed a molecular-dynamics code needed to simulate the materials’ behavior using Abaqus finite element analysis (FEA) from Dassault Systèmes SIMULIA. Abaqus provided the ability to have different length and time scales in their analyses, such as using Explicit and Standard in different portions of a structure. Abaqus’ “plug-in friendliness” allowed the researchers to develop their own subroutines to complement and expand the software’s native capabilities. The ability to create “handshake” regions between Abaqus meshes was also important to the research.

The speed at which changes are taking place in this industry is both exciting and extraordinary. Life science companies can now provide more people around the world with affordable and innovative treatments, devices and medicines.

To meet this challenge, medical device companies must continually evaluate how they can improve their manufacturing processes to improve quality and performance.

Discover how simulation makes the development process in life science and medical technology more efficient:

Case Study "A Computationally Efficient and Accurate Lumbar Spine Model" 1.07 MB
Case Study – A Computationally Efficient and Accurate Lumbar Spine Model

Stiffness properties of lumbar spinal units were calibrated using a connector-based model combining motion capture experiments and kinematic modeling. The predicted stiffness of L23 was used to calibrate the material properties of a detailed finite element (FE) model.

Case Study “GN ReSound: Designing Advanced, Smaller Hearing Aids” (Abaqus) 3.39 MB
Case Study “GN ReSound: Designing Advanced, Smaller Hearing Aids”

GN ReSound needed to design its more advanced, smaller hearing aids with greater precision in order to mitigate the potential for impact damage to the delicate receiver mechanism when dropped. Realistic simulation with Abaqus FEA software from Dassault Systèmes SIMULIA helped GN ReSound predict the effects of impact on their devices and design their products to withstand the stresses and strains of patient use. GN ReSound can design the hearing aids of the future with confidence in their quality and robustness, delivering the latest products to their customers in less time.

Case Study “FEops: Increasing the Safety and Efficacy of Transcatheter Aortic Valve Implantations” (Abaqus) 2.57 MB
Case Study “FEops: Increasing the Safety and Efficacy of Transcatheter Aortic Valve Implantations”

FEops wanted to contribute to further increasing the safety and efficacy of Transcatheter Aortic Valve Implantations (TAVI). Abaqus software is a key component of FEops’ unique TAVIguide technology to create realistic models of stent-supported heart valve function before, during, and after valve implantation. SIMULIA solutions, used in conjunction with FEops proprietary software, enabled FEops to provide surgeons and cardiovascular device designers with a tool that allows them to pre-operatively visualize surgical procedures and accurately predict the behavior of the devices. This translates to time and cost savings for FEops’ customers and improved quality of care for patients.

Case Study “Munich University of Applied Science: Creating Detailed Multi-Body Simulations of Broken Bones and the Surgical Techniques Used To Repair Them” (Simpack) 1,010.40 KB
Case Study “Munich University of Applied Science: Creating Detailed Multi-Body Simulations of Broken Bones and the Surgical Techniques Used To Repair Them”

Post-surgical complications are more common in elderly patients with weaker bones. Researchers at the Munich University of Applied Sciences wanted to create realistic models of different repair options to determine which were best for these osteoporosis patients. Dassault Systèmes SIMULIA’s Simpack software enabled the researchers to created detailed, flexible, multi-body simulations of broken bones and the surgical techniques used to repair them. Simpack models accurately captured damage that can result over time when abnormal bones respond to forces resulting from different methods of surgery.

Case Study “University College London: Identifying the Optimum Blood-Vessel-Stent Diameter“ (Abaqus) 276.58 KB
Case Study “University College London: Identifying the Optimum Blood-Vessel-Stent Diameter“

Clinicians at Great Ormond Street Hospital for Children wanted to identify the optimum blood-vessel-stent diameter that would repair one patient’s unique problems following failure of a previous implant. Researchers at University College London Institute of Cardiovascular Science used Dassault Systèmes’ SIMULIA Abaqus, in combination with patient image data, to create personalized, virtual models of the patient’s anatomy. The implantation of different sized stents was simulated to compare their effects on blood flow, pressure, and aneurysm coverage. SIMULIA tools helped the engineers and clinicians collaborate on visualizing the challenge and selecting the stent diameter that was the most effective in treating the patient, resulting in a successful outcome.

Worldwide construction investments are increasing year by year; modern technologies and digitalization are revolutionizing the building trade. The basic prerequisite for taking advantage of the resulting opportunities is a smooth project flow. Problems and errors in planning, design, and construction must be identified early before they lead to budget overruns or prevent construction progress.

Discover how simulation makes the architectural and construction development process more efficient:

Case Study “Dr. Sauer and Partners: Modeling of the Major Construction Sequences of Excavation and Lining Installation Ahead of Tunneling Works“ (Abaqus) 1.21 MB
Case Study “Dr. Sauer and Partners: Modeling of the Major Construction Sequences of Excavation and Lining Installation Ahead of Tunneling Works“

As the firm providing tunneling expertise to the London Underground, Dr. Sauer and Partners faced complex design challenges that included tunnel geometry and alignment, limited clearance to existing foundations, a restricted worksite and strict settlement criteria. Abaqus/CEA and FEA, from Dassault Systèmes’
SIMULIA, were used to perform all 3D numerical analyses ahead of the main tunneling works, handling large, complex geometries with ease. 3D modeling and simulation of the major construction sequences of excavation and lining installation gave engineers valuable insights into the effects of the work at each stage of the project.

Case Study “Stutzki Engineering: Breaking Architectural Barriers with Structural Glass“ (Abaqus) 186.34 KB
Case Study “Stutzki Engineering: Breaking Architectural Barriers with Structural Glass“

As glass has moved closer to center stage in architecture, it has also taken on a new role as a structural, load-bearing component. Heavy steel supports, and
strong aluminum mullion systems that capture glass panes by their edges, are now making way for thin cables, glass fins and point-supported glass (PSG). Stutzki Engineering employs Abaqus FEA to help design the material in this new role.

White Paper "How reservoir Geomechanics Is Being Addressed by SIMULIA" 697.75 KB
White Paper "How reservoir Geomechanics Is Being Addressed by SIMULIA"

Energy consumption in the world is increasing. The growth in consumption is expected to be strongly driven by China, India and other non-OECD countries. Most of this consumption will be related to oil and gas, mainly for transportation and electricity. Oil and gas also are primary raw materials for a wide range of products including plastics and chemicals, and their usage is also increasing fast. This increase in the demand for oil and gas needs to be satisfied reliably and sustainably. How can we ensure that this happens? Extraction of oil and gas is a capital intensive activity; wells need to be drilled, offshore structures need to be erected, both well in advance of the actual oil and gas extraction. The oil and gas producer needs to plan out the expenditure and revenue well in advance to ensure profitability. Without a good profit, the producers will not produce, which

Environmental protection and increased public control are leading to a growing interest in alternative solutions in the energy industry - conventional business models are being turned upside down. 

Wind energy in particular is a very young discipline, which is developing at a rapid speed. However, wind turbines are highly complex systems: high vibration levels, different wind speeds and environmental impacts as well as noise emissions and species protection present the industry with a number of challenges. With the help of simulation, you can test a WT in the early phases of the development process and thus find the optimum design alternative.

Discover how simulation makes the renewable energy development process more efficient:

Case Study “Schaeffler Technologies: Designing the Best Rig Possible for Large-Size Rolling Bearing” (Abaqus) 5.66 MB
Case Study “Schaeffler Technologies: Designing the Best Rig Possible for Large-Size Rolling Bearing”

Anticipating that the trend towards bigger wind turbines would dictate a need for much larger test rigs than were available, Schaeffler wanted to design and construct the best test rig possible for their large-size rolling bearing customers. Abaqus FEA helped Schaeffler design a virtual prototype with which they could carry out stress analysis and strength verification in order to quantify the critical operating conditions of their huge new test rig. Their Abaqus models enabled Schaeffler to prove their bearing test rig reliable and applicable for all types of large-size bearings. The company can now develop more detailed
instructions for operating and maintaining finished turbines. This helps them provide their customers with more precise recommendations about the optimum location and construction of their wind turbines, and also support customers in other industries.

Case Study “NSE Composites: Developing An Innovative, Sweep-Twist Wind Turbine Blade Design“ (Abaqus) 853.82 KB
Case Study “NSE Composites: Developing An Innovative, Sweep-Twist Wind Turbine Blade Design“

NSE Composites needed to analyze loads, stresses, and fatigue for an innovative, sweep-twist wind turbine blade design that is targeted to capture significantly more energy on light-windspeed sites. Using SIMULIA’s Abaqus finite element analysis (FEA), engineers were able to validate overall blade twisting behavior as well as buckling and fatigue. Calculations were in good agreement with earlier “section” analysis techniques as well as the physical and field testing that followed. Realistic simulation enabled NSE to validate a Sandia-funded sweep-twist design that captures 12 percent more energy.