recently there was no way to run real-world tests on the newer, large-size wind turbine bearings.

Enter Schaeffler Technologies AG & Co. KG of Germany, rolling-bearing specialists. The company’s catalog of rolling bearing assemblies is one of the widest in the industry, covering nearly all industrial and consumer applications with more than 40,000 products under the brands INA and FAG. “Most people do not recognize that nearly every industry uses rolling bearings or rolling bearing parts,” says Martin Stief, CAE Integration department engineer for Schaeffler. One of the highlights over FAG’s 100-year history is the London Eye (officially, the Millennium Wheel). This Ferris wheel is the world’s largest and heaviest, standing 135 meters high, measuring 424 meters in circumference, and weighing 2,100 tonnes. Two FAG spherical roller bearings several meters wide and weighing several tonnes help rotate the wheel smoothly.

With years of experience in testing bearings before putting them to work, Schaeffler realized that the growing trend towards larger wind turbines would quickly dictate a need for much bigger test rigs than were available.

“Before even thinking about performing expensive real-world tests on large-size wind turbine bearings, we needed to quantify the critical operating conditions to minimize testing time and costs,” says Stief. “We also wanted this information to design and construct the best test rig possible for such large-size bearings.” Finite element analysis (FEA) provided both insights.

Big bearings require a big test rig

While Schaeffler had small test rigs for simulating and applying real-world bearing loads on small-size roller bearings, it did not have
a large rig for simulating the conditions in a commercial, multi-megawatt wind turbine. “When planning our large rig project, conservative engineering was the watchword for extrapolating bearing lifetime tests from small to big bearings,” says Stief. “FEA helped us determine the lifetime of larger bearings more exactly. We can now design precisely the size of bearing required by a particular turbine geometry, which helps keep costs down. We were also able to do kinematic analysis with original parts, from both bearings and assemblies provided by customers. This saves on development time in the re-engineering and design process.”

The finished test rig is 16 meters long, 6 meters wide and 5.7 meters high. Its mass is approximately 350 tonnes. As with wind turbines in the field, the rig is on a 5-degree tilt. It has five main subassemblies: drive train, loading frame, auxiliary bearing, test bearing, and tensioning frame. Eight radial and axial cylinders replicate real-world loads. Approximately 500 bolts are needed to mount the auxiliary and test bearings. The finished rig can test bearings with a maximum diameter of approximately 3.5 meters, making it the most modern, largest, and highest performing large-size bearing test rig in the world. At a cost of approximately seven million Euros, the rig represents a significant investment in Schaeffler’s future developments in renewable energy, as well as other large-size bearing applications such as the heavy equipment used in construction, mining, and excavation.

Despite the two years spent designing and constructing the test rig, the time spent on mechanical finite element (FE) simulation was short: just two months for strength assessment and modal analysis. “Because the wind industry is booming right now, we wanted to make the test rig as fast as possible,” says Stief. “This meant having a quick and accurate way to simulate, analyze, and verify rolling bearing assemblies—so we could create a test rig that could accurately measure them in action.”

Surmounting design challenges

Schaeffler started by creating a virtual prototype to validate the physical test rig, which itself would replicate the actual conditions for roller bearings in a wind turbine. To do this, Stief formed a simulation team of five full-time and two part-time members, all of whom were experienced with using Abaqus finite element analysis (FEA). “Abaqus has been Schaeffler’s primary FEA tool for years,” says Stief.

The team divided the test rig analysis into smaller, manageable, functional FE submodels, which were then connected together to represent the overall test rig. To ensure the accuracy of this global representation, the team used its engineering judgment in defining loads, transition regions, and boundary conditions (e.g., stiffness, mass, and damping) between FE submodels. Parts of the submodels were replaced by interface conditions that could be determined by analytical or simulation-based calculations. This approach helped reduce the size of the submodels and sped the creation of working models.

“Using Abaqus to test the strengths of joints and to check specific connections,” says Stief. “When the overall design of the test rig became clearer, we began using Abaqus on the submodels for strength verification. From those results, we improved the test-rig design using basic mechanical engineering knowhow, such as strengthening ribs by making them larger. Then we’d run the submodel through Abaqus again for another strength assessment.” The team also created an additional FE model to quickly evaluate the entire test rig’s modal behavior, as well as confirm their definitions for the boundary conditions between submodels. The modal analysis was also used to estimate the eigenfrequencies for the test rig. “Obviously, we don’t want resonance,” says Stief. “We don’t want the test rig shaking itself apart.”

Wind turbines typically rotate about 16 revolutions per minute, but the engineers wanted their test rig to run up to 60 revolutions per
The submodel of the bearing package included the raceway (inner and outer rings), inner elements, says Stief.

have been impossible to make any FE calculations without user bearing test rig has at least 500 of these rolling elements. It would plummeted from about 5 hours to about 5 seconds. “The large-size meshing each of the rolling elements. Computing time for analysis significantly shortened the time, effort, and cost of 3D modeling and of freedom that would have had to be calculated separately. These special elements reduced the degrees of freedom by several orders of magnitude (from a range of 10^5 down to approximately 10^2). This significantly shortened the time, effort, and cost of 3D modeling and meshing each of the rolling elements. Computing time for analysis plummeted from about 5 hours to about 5 seconds. “The large-size bearing test rig has at least 500 of these rolling elements. It would have been impossible to make any FE calculations without user elements,” says Stief.

Software features to the rescue
Various functions within Abaqus helped make model creation efficient and fast. For example, Abaqus includes hundreds of types of user elements—subroutines that allow the user to define their own finite element behavior inside an Abaqus model. In the bearing package submodel, the rolling elements of the bearings were replaced with customized user elements representing the precise stiffness behavior of the rolling elements and the associated degrees of freedom. The precise representation of bearing stiffness significantly reduced computing times.

minute—the same as a critical excitation frequency of 1 Hz. The modal analysis confirmed that the first natural frequency of the rig was 13 Hz, well beyond this 1 Hz value and thus not an issue (subsequent frequencies were even higher).

To validate their virtual prototype, Schaeffler ran the full FE model of its test rig through a large number of load cases within Abaqus. Even with a very coarse mesh of the entire test rig, the load-case calculations initially hit the limits of the available computing capacity, with 32 GB of RAM, calculating 17 load cases took 48 hours. However, this time was later slashed to 10 hours using a newly built-up HPC Linux Calculation Cluster with faster CPUs and more RAM.

Analysis leads to optimization and time savings
After stress analysis, the team focused on strength verification according to Germany’s FKM Guideline for analytical strength assessment and the VDI 2230 standard for screw connections. The results pointed to additional design modifications in the test rig, such as optimizing screw connections, adding components for increased reliability, optimizing radii to reduce stresses, and adding reinforcing ribs.

“The simulation models we created proved our large-size bearing test rig reliable and applicable for all types of large-size bearings,” says Stief. Going forward, simulation—validated with test rig runs—will also provide Schaeffler with bearing-specific values, such as load distribution, pressure distribution, and contact angles, and important data about the elastic behavior of bearing components under high preload. “This will lead to even more realistic results in bearing lifetime calculation,” says Stief.

Their current work now helps Schaeffler detect critical operating conditions early in the development of large-size bearings, and minimize bearing test time on the rig (with associated operating costs). From this, Schaeffler can optimize its bearing products earlier and easily in all the design stages and put added focus on reducing friction in its roller bearings.

In total, says Stief, simulation with Abaqus FEA has been invaluable in maximizing the performance of Schaeffler’s own products—as well as those of their customers. “In the wind industry, we can now develop more detailed instructions for operating and maintaining finished turbines,” he says. “This in turn helps us provide our customers with more precise recommendations about the construction of their wind turbines. And our new test rig enables us to support customers in other industries as well.”
Delivering Best-in-Class Products

CATIA
Virtual Product

EXALead
Information Intelligence

SOLIDWORKS
3D Design

GEOVIA
Virtual Planet

SIMULIA
Realistic Simulation

NETVIBES
Dashboard Intelligence

DELmia
Digital Manufacturing

3DSWYM
Social Innovation

ENOVIA
Collaborative Innovation

3DVIA
3D Communication

Dassault Systèmes, the 3DEXPERIENCE Company, provides business and people with virtual universes to imagine sustainable innovations. Its world-leading solutions transform the way products are designed, produced, and supported. Dassault Systèmes’ collaborative solutions foster social innovation, expanding possibilities for the virtual world to improve the real world. The group brings value to over 150,000 customers of all sizes, in all industries, in more than 80 countries. For more information, visit www.3ds.com.

Europe/Middle East/Africa
Dassault Systèmes
10, rue Marcel Dassault
CS 40501
78946 Vélizy-Villacoublay Cedex
France

Asia-Pacific
Dassault Systèmes
Pier City Shibaura Bldg 10F
3-18-1 Kaigan, Minato-Ku
Tokyo 108-002
Japan

Americas
Dassault Systèmes
175 Wyman Street
Waltham, Massachusetts
02451-1223
USA

Visit us at
3DS.COM/SIMULIA